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The problem of reconstructing the shape of a convex defect in a solid body from the results of 

measurements of the amplitude of back-scattering of an ultrasound wave is considered. It is assumed that 

the length-scale of the defect is much larger than the wavelength, which allows the problem to be considered 

in the ray approximation. It has been shown [1] that, using such an approach, the problem being 

investigated reduces to the well-known Minkowski problem: for a given Gaussian surface curvature 

reconstruct the shape of a closed convex surface. It has been shown [2] that under specified conditions a 

unique convex surface exists which has the Gaussian curvature of a given continuous function. However, an 

algorithm allowing one to construct such a convex surface does not exist. In this paper a numerical method 

is developed which enables one to implement the reconstruction of the required convex surface. As 

examples we consider the reconstruction of ellipsoids of revolution with various eccentricities, and also a 

nearly-cylindrical surface. 

1. SUPPOSE there is a defect in an elastic medium in the form of a cavity of unknown shape. One of the most 
widely used methods of detecting and identifying such defects consists of using non-destructive ultrasonic 
monitoring. It involves irradiating the unknown boundary of the defect, which is a closed surface S, with plane 
ultrasonic waves at all possible angles of incidence, and measuring the amplitudes of the reflected echo-waves 
in the far field. In this paper we will restrict ourselves to the case when the unknown surface S is smooth and 
convex. One can show that under irradiation, in the echo regime, using existing ultrasonic transducers, one of 
the two types of wave (longitudinal or transverse) will always predominate over the other [3]. Because of this it 
can be shown that the amplitude of the reflected wave in the ray approximation has the same form, as in the 
acoustic case (i.e. in a medium where only one of these types of wave can propagate). This amplitude can be 
expressed in terms of the Gaussian curvature of the surface at the point at which the direction of the normal 
coincides with the direction of the radiation [ 11: 

A=cfi, “I=R,R~ (1.1) 

where c is some constant. Thus, in the present approach, the problem being investigated reduces to the 
Minkowski problem, well-known in differential geometry: from a given Gaussian curvature reconstruct the 
shape of a smooth closed convex surface [2,4]. 

Later we shall require the following theorem. 

Theorem 1 [2]. Suppose y(a) is a positive continuous function such that 

s 7 (cc); (a) da=0 (1.2) 

where Sz is the total solid angle of three-dimensional space. Then there exists a unique smooth closed convex 
surface for which y-‘(cx) = (R1 RZ)-’ for an arbitrary LX E fi is the Gaussian curvature at the point with normal 

n(a). 
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A specific construction of the required surface can be implemented by various methods. The most efficient 
one is based on the use of the concept of the support function. 

We will introduce an auxiliary function P(a) [4] connected as follows, with the distance p(cx) from the origin 
of coordinates to the tangent plane with normal a: 

P(ai, a2, a3)=rp(aJr, a&, as/r) 

a= (a,, a2, as). I’= (a,2+a22+aS2)‘/~ 
(1.3) 

Here a is the exterior normal vector to the surface. The function P(a) satisfies the following relation [4]: 

f ,,PZZ+P,,P33+P22P33-P12t-P,32-p2Ja=r(a) 

(Pjj=#P/ki~lhj: I. j=l. 2, 3) 
(1.4) 

where $a) > 0 is the reciprocal of the known Gaussian curvature. Thus the problem reduces to solving the 
non-linear partial differential equation (1.4). 

2. Unlike the problem investigated in the present paper, the original problem of reconstructing a convex 
surface from the mean curvature reduces to a linear partial differential equation for the function P(a), the 
solution of which is constructed by a spherical harmonic expansion. Apart from the fact that this approach 
cannot be applied to a non-linear equation of the form (1.4), it is also inefficient for essentially non-spherical 
surfaces. In this paper we propose a completely different method. 

We change from Cartesian to spherical coordinates in Eq. (1.4), using the relations 

IJ,=P, .5in I-1 cos fp+Pe cob 0 co8 (p/r-P, sin cp/(r sin 0) 

P,=P, sin 0 sin cp+Pe cos 0 girt q/r+P, cos c&/(r sin 0) 

P,=P, COS 0-I’0 sin O/r (Pj=dP/i?Cri, i=i, 2. 3) 

(2.1) 

One similarly calculates the second derivatives Pii (i, j = 1, 2, 3). 
Using well-known relations [4] governing the properties of the function P(a), we have 

r~t~ldr=l~lr. d/‘,/dr-O (i=1. 2. 3) (2.2) 

The original equation (1.4) holds throughout the space of the variables a1 , CY*, a3 . The transition to spherical 
coodinates using relations (2.2) enables one to get rid of the derivatives with respect to r. This makes it 
sufficient to solve the resulting non-linear differential equation on the unit sphere (with r = 1). 

To solve the given equation on the unit sphere one uses difference expressions for the first and second 
derivatives on a grid consisting of parallels and meridians. Taking grid steps for f3 (OS fJi< rr) and 4 
(OS +~227~) that are identical and equal to h = T/N, we have at the (i, j) node 

/Jo= (pi 1.1. J-pi -1. J)/(2/1) 1 pqz (/JI, j !-l-p,. ~-1)/(2h) 
/Joe= (pi+!. J-Zp’*‘+p’-‘. J)//,“, [jm=(p~. j+l-2pt.J+pi. J-l)//,2 (2.3) 

Pew= (P’ z+l. j+l_pi-I.,+I_pi+l.j-I+Pi-l.j-l 
,/(4W 

Substituting relations (2.1) and (2.3) into (1.4) we obtain the non-linear system of algebraic equations 

:lP=y (2.4) 

In order to obtain a one-dimensional vector of unknowns Pk on the two-dimensional grid Pii it is necessary to 
renumber the nodes (ei, I&) in the form of a one-dimensional array. The following node-numbering procedure 
is proposed. For each $j the sequential numbering corresponds to increasing angle Bi: h 5 Bi 6 T - h. The 
process then continues to the next higher value $+I. The last two nodes are the two poles. Finally the 
dimensions of system (2.4) are 2N(N- 1) +2. The Newton-Kantorovich method is applied to this system, in 
which the subsequent approximation P,,,, is expressed in terms of P, in the following manner: 

P n ‘,=P”+3,, (2.5) 

where z, is found from the linear algebraic system 

Jz,=y-AP,, (2.6) 

Here J = A’ is the Jacobian of system (2.4). The structure of the very sparse matrix J is as follows: there is a 
diagonal band of half-width N and there are two final rows and two final columns. The linearized system (2.6) is 
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therefore not a system with a banded matrix. Consequently, the method of solving it using the sparseness of the 
matrix J is much more complicated than a simple pivotal condensation. 

We used well-known methods for solving sparse system [5]. Practical implementation showed good 
convergence of the proposed approach for all the convex surfaces considered. Here the computing time on an 
IBM PC AT did not exceed 30 s. 

The method considered in this paper for reconstructing the form of a convex defect, applicable in the case of 
very short waves, enables one to reach an interesting physical conclusion. 

We assume that in this short-wave range the amplitude of the back-scattering A(u) is known for an arbitrary 
non-convex imperfection [A(a)>O]. Such a function is of course continuous everywhere [6]. We introduce an 
auxiliary function y defined by formulas (1.1): 

y(a) =A2(a)/cz (2.7) 

The result of Theorem 1 says that when condition (1.2) is satisfied there exists a convex surface with Gaussian 
curvature l/y. It follows that in the context of the short-wave asymptotic form we have the following theorem. 

Theorem 2. Suppose A(a) is the amplitude of back-scattering from an arbitrary object. If 

5 n(a)A2(a)da=0 (2.8) 
0 

then as well as the real object there also exists a convex surface whose reflection diagram is identical with the 
function A(u). 

Corollary. If the actual defect is symmetrical about the origin of coordinates, the result of Theorem 2 is 
automatically valid. 

Indeed, in this case integral (2.8) is always equal to zero, because the symmetry means that the positive and 
negative contributions to the integrals mutually cancel. We note that the symmetry of the original object about 
the coordinate axes is a special case of symmetry about the origin of coordinates. 

Figure 1 shows two-dimensional contours that cannot be distinguished at high frequencies, 2h is the 
characteristic size of the real object and A is the wavelength (A = 2~). 

3. In the two-dimensional case the amplitude of the scattered wave can be expressed by [ 11 

A=i/2frckp(a) (3.1) 

where k is the wave number. In this case the problem consists of finding a convex contour 1 with curvature 
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FIG. 1. 
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FIG, 2. 

As in the three-djmens~o~al case, the problem is non-linear. Neverthelesst the change to the function P(a) 
reduces the problem to linearity, which is in itself remarkable and apparently not described in the literature. 
Indeed, we have the relation [4] 

dsi+g&Q=0, i=l, 2 

Substituting the expression f4] xi = Pi( OL ) we obtain a linear homogeneous system of algebraic equations for 
&xl and daze 

The determinant uf this system must vanish, i.e. 

pZ+ Pitwaz) p+P*tP22--P*22=0 (3.2) 

One can show that the free term in Eq. (3.2) is zero because of the homogeneity properties [4]. We therefore 
have 

PW=- Pi I+3321 (3.3) 

As in the three-dimensional case, in polar coordinates 0~1 = rcos8, 012 = rsin8 we arrive at the equation 

Pee(Q)+P(@>=-pfa) (3.4) 

on the unit circle. The fi~ite~difference approach described above reduces here to a matrix where, as well as a 
main tri-diagonal band, there is also a non-zero element in each of the upper right and lower left corners. 

As examples Figs 2-4 show the results of reco~~truetio~s of defect surfaces in the form of ellipsoids with 
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semi-axis ratios 1: 4 and 2 : 1, and also a surface close to a circular cylinder (the base diameter being equal to the 
height of the cylinder). Because these test examples are for axisymmetric surfaces, only axial sections are 
shown. Because the axial sections are themselves symmetrical, only the first quadrant is shown. Note that in 
Figs 2-4 the axis of rotation is the y axis. The broken lines show the first three iterations of the proposed 
method (the first approximation always being chosen to be a sphere). The solid line shows the actual surface, 
which in all the examples is nearly identical with the result of the calculation of the third approximation. 

1. 
2. 
3. 
4. 

5. 
6. 

REFERENCES 

SHENDEROV Ye. L., Wave Problems of Hydro-acoustics. Sudostroyeniye, Leningrad, 1972. 
POGORELOV A. V., The Multidimensional Minkowski Problem. Nauka, Moscow, 1975. 
YERMOLOV I. N., The Theory and Practice of Ultrasonic Monitoring. Mashinostroyeniye, Moscow, 1981. 
BLASHKE V., Differential Geometry and the Geometrical Foundations of Einstein’s Theory of Relativity, Vol. 1. Glav. 
Red. Obshchetekh. Lit. i Nomgr., Moscow and Leningrad, 1935. 
PISSANETSKI S., Sparse Matrix Technology. Mir, Moscow, 1988. 
COLTON D. and CRESS R., Integral Equation Methods in Scattering Theory. Mir, Moscow, 1987. 

Translated by R.L.Z. 


